首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16533篇
  免费   3724篇
  国内免费   1908篇
测绘学   2401篇
大气科学   719篇
地球物理   9183篇
地质学   5869篇
海洋学   1091篇
天文学   366篇
综合类   926篇
自然地理   1610篇
  2024年   19篇
  2023年   139篇
  2022年   472篇
  2021年   602篇
  2020年   670篇
  2019年   627篇
  2018年   611篇
  2017年   746篇
  2016年   698篇
  2015年   752篇
  2014年   968篇
  2013年   1016篇
  2012年   1054篇
  2011年   1069篇
  2010年   850篇
  2009年   1010篇
  2008年   1077篇
  2007年   1161篇
  2006年   1221篇
  2005年   1031篇
  2004年   979篇
  2003年   784篇
  2002年   725篇
  2001年   514篇
  2000年   493篇
  1999年   425篇
  1998年   387篇
  1997年   331篇
  1996年   321篇
  1995年   285篇
  1994年   268篇
  1993年   248篇
  1992年   159篇
  1991年   105篇
  1990年   85篇
  1989年   71篇
  1988年   62篇
  1987年   35篇
  1986年   30篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1981年   4篇
  1980年   3篇
  1979年   19篇
  1971年   1篇
  1954年   15篇
  1900年   3篇
  1897年   1篇
  1880年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
目前,对于大庆地区的地质构造研究成果仅局限在深部构造上,该地区从未开展过针对近地表隐伏断裂的探查工作.本文采用浅层反射地震勘探方法,查明了克山—大安断裂嫩江组以上地层的详细地层信息以及断裂的展布形态;同时,在主干断裂上覆的背斜构造中,发现了许多次级断裂,这些次级断裂在前人的成果中并未提出过,并且在本区的断裂-褶皱构造体系中,次级断裂的活动特性同样受主干断裂活动的影响;然后通过钻孔验证,证实了浅层反射地震勘探结果的可靠性,并且确定了次级断裂的最新活动时代;最后综合编制了松辽盆地长垣隆起地区浅层地质模型,并讨论了本地区的构造体系受晚白垩纪以来太平洋板块俯冲方向变化的影响而形成的构造特征.本次研究中的方法和成果可为大庆市城市发展规划、重大工程建设选址和大庆油田安全高效生产等提供科学依据,可为其他地区开展近地表断裂探查提供借鉴和参考,为本地区浅层地质构造后续研究提供了基础资料,填补该地区近地表地球物理勘探构造研究的空白.  相似文献   
32.
太原盆地及周边地区双差层析成像   总被引:2,自引:0,他引:2       下载免费PDF全文
山西断陷带位于鄂尔多斯与华北地块交汇处,是我国著名的历史强震活动带之一,尤其是断陷盆地中部区域,6级以上地震频发.本研究旨在揭示忻定盆地中南部、太原盆地及临汾盆地中北部交汇处的深部结构特征,分析盆地的形成和演化,探讨该区域孕震环境.利用山西地震台网观测数据以及固定地震台站融合流动台站得到的地震数据,共7455个地震事件,采用双差层析成像方法,反演得到了太原盆地及周边地区的三维P波速度结构及精定位结果.层析成像结果显示,忻定盆地、太原盆地的中上地壳为明显的低速异常,被高速的石岭关隆起隔开,深部结构特征相对简单.太原盆地、临汾盆地及灵石隆起之间的深部结构特征较为复杂,反映了两个盆地演化过程的复杂性.穿过忻定盆地的速度剖面显示,在中地壳存在明显的低速异常体,且大部分地震都发生在该低速体上方;穿过太原盆地北部的剖面显示,该区域在20~25 km深度范围内有较密集的地震分布,并勾画出交城断裂呈犁形的断层特征;穿过太原盆地中部的剖面显示,太原盆地自西向东沉积层逐渐减薄;穿过临汾盆地的剖面揭示,汾东断裂在浅部倾角较陡,随深度增加倾角逐渐变小,倾向向东.  相似文献   
33.
王琼  高原 《地球物理学报》2018,61(7):2760-2775
本研究收集了甘肃、青海、宁夏等118个宽频带数字地震台站的连续波形资料,利用噪声互相关,经过计算和筛选,在5~38 s范围内,共得到5773条瑞利波相速度频散曲线.然后采用1°×1°的网格划分,反演获得青藏高原东北缘相速度和方位各向异性分布.结果表明:短周期8~12 s内,鄂尔多斯从低速异常变为高速异常;该周期范围内各向异性结果与区域断裂走向有很好的一致性.18~25 s周期内,祁连地块、松潘-甘孜地块、羌塘地块低速异常范围逐渐变大,随周期增加地壳低速异常与人工探测结果相符;鄂尔多斯表现为速度随周期增加逐渐变大,说明其中下地壳速度相对偏高,不存在低速异常;该周期范围内的各向异性特征表现为,祁连地块和松潘甘孜地块大致呈NW-SE方向,而青藏高原内部快波方向显示了顺时针旋转的形态.在30~35 s范围内面波速度主要受莫霍面深度和莫霍面附近介质速度的影响,与地壳厚度分布有非常好的吻合.综合不同方法获得的各向异性研究结果,支持印度-欧亚板块的碰撞使青藏高原东北缘地壳发生缩短和逐渐隆升的观点,认为整个岩石圈的垂直缩短变形是青藏高原东北缘的主要形成机制.  相似文献   
34.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   
35.
Landslides and rock falls along the highway are common geological hazards in Southwest China. As an influencing factor on potential landslides behavior, roads or distance to roads have been successfully used in landslide susceptibility assessments in mountainous area. However, the relationship between the road-cut and the slope stability is not clear. Therefore, we performed two-dimensional slope stability calculation using the general limit equilibrium (GLE)method incorporated in the software SLOPE/W of GeoStudio for stability analysis of slopes. Our studies show that the man-made roads influence on the slope stability mainly exists in two ways:One is to create a new steep slope, which will result in rock falls and shallow landslides along the roads; the other is to influence the stability of the original slope, which will result in comparatively huge landslides. For the latter, our simulation study reveals that the road location, namely at which part of a natural slope to construct a road is important for the slope stability. For a natural slope with a potential slip surface, if a road is constructed at or near the slope toe where the potential slip surface surpasses, it will greatly degrade the slope's factor of safety (Fs) and make the slope unstable; however, if a rode-cut is near the top of the slope, it will increase the slope's Fs and make the slope more stable. The safety location is different for different slope angle, steeper slope needs a higher location for a safety road-cut in comparison with gentle slopes. Moreover, the slope stability decreases when loading a seismic force and it varies with the slope angle. Firstly, the Fs decreases when the slope angle increasing, and when the slope angle reaches 45°, the Fs then becomes greater with the slope angle increasing.  相似文献   
36.
调查发现山西北部农村地区农居窑洞多是独立式土坯窑洞,结构主要受力体系是土坯砌体砌筑拱结构,其建造无统一标准,外形样式存在差异。由于拱结构的内力分布对外形尺寸变化比较敏感,为研究窑洞外形特征对结构抗震性能影响,建立相应的有限元模型进行计算分析,对比不同外形特征窑洞在地震作用下的损伤情况,并结合历史震害,指出窑洞结构的薄弱位置。研究结果表明覆土较厚的窑洞容易损伤,连拱孔数较多窑洞的两侧位置更容易发生破坏,拱的曲线形状对结构抗震性能有一定影响,合理拱曲线窑洞的抗震性能优于一般形状窑洞。  相似文献   
37.
2017年四川九寨沟7.0级地震前地震应变场分析   总被引:2,自引:1,他引:1       下载免费PDF全文
以地震应变场作为地震活动的变量,通过自然正交函数展开方法,计算2017年8月8日四川九寨沟7.0级地震前的地震应变场,提取出震前时间因子的异常变化。计算结果发现应变场前4个时间因子在震前1~3年的中短期异常并不显著,只有第2个和第4个时间因子震前有小幅度的异常变化,分析其原因,时间因子可能受到2008年汶川8.0级地震和2013年岷县漳县6.6级地震前大幅度异常的影响。与时间因子对应的空间等值线形成局部应变高值异常危险区,可能是2013年岷县漳县6.6级地震和2017年九寨沟7.0级地震空间异常的中短期特征。再对比九寨沟7.0级地震前后与松潘-平武7.2级双震的空间异常随时间演变,分析异常发展变化模式的差异,最后应用地震资料的累积频次从物理角度解释异常形成的机制。  相似文献   
38.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
39.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
40.
Two photometric follow-up transit (primary eclipse) observations on WASP-43 b and four observations on TrES-3 b are performed using the Xuyi Near-Earth Object Survey Telescope. After differential photometry and light curve analysis, the physical parameters of the two systems are obtained and are in good match with the literature. Combining with transit data from a lot of literature, the residuals (O ? C) of transit observations of both systems are fitted with the linear and quadratic functions. With the linear fitting, the periods and transit timing variations (TTVs) of the planets are obtained, and no obvious periodic TTV signal is found in both systems after an analysis. The maximum mass of a perturbing planet located at the 1:2 mean motion resonance (MMR) for WASP-43 b and TrES-3 b is estimated to be 1.826 and 1.504 Earth mass, respectively. By quadratic fitting, it is confirmed that WASP-43 b may have a long-term TTV which means an orbital decay. The decay rate is shown to be P? = (?0.005248 ± 0.001714) s·yr?1, and compared with the previous results. Based on this, the lower limit of the stellar tidal quality parameter of WASP-43 is calculated to be Q*1.5×105, and the remaining lifetimes of the planets are presented for the different Q* values of the two systems, correspondingly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号